Skip to main content

Pinecone

Pinecone is a vector database with broad functionality.

In the walkthrough, we'll demo the SelfQueryRetriever with a Pinecone vector store.

Creating a Pinecone indexโ€‹

First we'll want to create a Pinecone vector store and seed it with some data. We've created a small demo set of documents that contain summaries of movies.

To use Pinecone, you have to have pinecone package installed and you must have an API key and an environment. Here are the installation instructions.

Note: The self-query retriever requires you to have lark package installed.

%pip install --upgrade --quiet  lark
%pip install --upgrade --quiet pinecone-notebooks pinecone-client==3.2.2
# Connect to Pinecone and get an API key.
from pinecone_notebooks.colab import Authenticate

Authenticate()

import os

api_key = os.environ["PINECONE_API_KEY"]
/Users/harrisonchase/.pyenv/versions/3.9.1/envs/langchain/lib/python3.9/site-packages/pinecone/index.py:4: TqdmExperimentalWarning: Using `tqdm.autonotebook.tqdm` in notebook mode. Use `tqdm.tqdm` instead to force console mode (e.g. in jupyter console)
from tqdm.autonotebook import tqdm

We want to use OpenAIEmbeddings so we have to get the OpenAI API Key.

import getpass

if "OPENAI_API_KEY" not in os.environ:
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
from pinecone import Pinecone, ServerlessSpec

api_key = os.getenv("PINECONE_API_KEY") or "PINECONE_API_KEY"

index_name = "langchain-self-retriever-demo"

pc = Pinecone(api_key=api_key)
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
from langchain_pinecone import PineconeVectorStore

embeddings = OpenAIEmbeddings()

# create new index
if index_name not in pc.list_indexes().names():
pc.create_index(
name=index_name,
dimension=1536,
metric="cosine",
spec=ServerlessSpec(cloud="aws", region="us-east-1"),
)
docs = [
Document(
page_content="A bunch of scientists bring back dinosaurs and mayhem breaks loose",
metadata={"year": 1993, "rating": 7.7, "genre": ["action", "science fiction"]},
),
Document(
page_content="Leo DiCaprio gets lost in a dream within a dream within a dream within a ...",
metadata={"year": 2010, "director": "Christopher Nolan", "rating": 8.2},
),
Document(
page_content="A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea",
metadata={"year": 2006, "director": "Satoshi Kon", "rating": 8.6},
),
Document(
page_content="A bunch of normal-sized women are supremely wholesome and some men pine after them",
metadata={"year": 2019, "director": "Greta Gerwig", "rating": 8.3},
),
Document(
page_content="Toys come alive and have a blast doing so",
metadata={"year": 1995, "genre": "animated"},
),
Document(
page_content="Three men walk into the Zone, three men walk out of the Zone",
metadata={
"year": 1979,
"director": "Andrei Tarkovsky",
"genre": ["science fiction", "thriller"],
"rating": 9.9,
},
),
]
vectorstore = PineconeVectorStore.from_documents(
docs, embeddings, index_name="langchain-self-retriever-demo"
)

Creating our self-querying retrieverโ€‹

Now we can instantiate our retriever. To do this we'll need to provide some information upfront about the metadata fields that our documents support and a short description of the document contents.

from langchain.chains.query_constructor.schema import AttributeInfo
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain_openai import OpenAI

metadata_field_info = [
AttributeInfo(
name="genre",
description="The genre of the movie",
type="string or list[string]",
),
AttributeInfo(
name="year",
description="The year the movie was released",
type="integer",
),
AttributeInfo(
name="director",
description="The name of the movie director",
type="string",
),
AttributeInfo(
name="rating", description="A 1-10 rating for the movie", type="float"
),
]
document_content_description = "Brief summary of a movie"
llm = OpenAI(temperature=0)
retriever = SelfQueryRetriever.from_llm(
llm, vectorstore, document_content_description, metadata_field_info, verbose=True
)

Testing it outโ€‹

And now we can try actually using our retriever!

# This example only specifies a relevant query
retriever.invoke("What are some movies about dinosaurs")
query='dinosaur' filter=None
[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'genre': ['action', 'science fiction'], 'rating': 7.7, 'year': 1993.0}),
Document(page_content='Toys come alive and have a blast doing so', metadata={'genre': 'animated', 'year': 1995.0}),
Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'director': 'Satoshi Kon', 'rating': 8.6, 'year': 2006.0}),
Document(page_content='Leo DiCaprio gets lost in a dream within a dream within a dream within a ...', metadata={'director': 'Christopher Nolan', 'rating': 8.2, 'year': 2010.0})]
# This example only specifies a filter
retriever.invoke("I want to watch a movie rated higher than 8.5")
query=' ' filter=Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=8.5)
[Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'director': 'Satoshi Kon', 'rating': 8.6, 'year': 2006.0}),
Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'director': 'Andrei Tarkovsky', 'genre': ['science fiction', 'thriller'], 'rating': 9.9, 'year': 1979.0})]
# This example specifies a query and a filter
retriever.invoke("Has Greta Gerwig directed any movies about women")
query='women' filter=Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='director', value='Greta Gerwig')
[Document(page_content='A bunch of normal-sized women are supremely wholesome and some men pine after them', metadata={'director': 'Greta Gerwig', 'rating': 8.3, 'year': 2019.0})]
# This example specifies a composite filter
retriever.invoke("What's a highly rated (above 8.5) science fiction film?")
query=' ' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='science fiction'), Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=8.5)])
[Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'director': 'Andrei Tarkovsky', 'genre': ['science fiction', 'thriller'], 'rating': 9.9, 'year': 1979.0})]
# This example specifies a query and composite filter
retriever.invoke(
"What's a movie after 1990 but before 2005 that's all about toys, and preferably is animated"
)
query='toys' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.GT: 'gt'>, attribute='year', value=1990.0), Comparison(comparator=<Comparator.LT: 'lt'>, attribute='year', value=2005.0), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='animated')])
[Document(page_content='Toys come alive and have a blast doing so', metadata={'genre': 'animated', 'year': 1995.0})]

Filter kโ€‹

We can also use the self query retriever to specify k: the number of documents to fetch.

We can do this by passing enable_limit=True to the constructor.

retriever = SelfQueryRetriever.from_llm(
llm,
vectorstore,
document_content_description,
metadata_field_info,
enable_limit=True,
verbose=True,
)
# This example only specifies a relevant query
retriever.invoke("What are two movies about dinosaurs")

Was this page helpful?